細胞因子風(fēng)暴
2020年3月,我國抗疫幾近結(jié)束,近兩日已無內(nèi)源性新增確診患者,但新冠病毒正肆掠全球其他國家,病毒感染導(dǎo)致的重癥與細胞因子風(fēng)暴密切相關(guān)?;诖?,我們今天談?wù)勗瓶寺∷鼙M到的綿薄之力。
細胞因子風(fēng)暴(Cytokine Storm)又稱細胞因子瀑布級聯(lián)(Cytokine Cascade)、高細胞因子血癥 (Hypercytokinemia)或細胞因子釋放綜合征(Cytokine Release Syndrome,CRS),它是機體對病毒、細菌、移植物或其他外界刺激所產(chǎn)生的一種過度免疫應(yīng)答。一般來說,正常的免疫系統(tǒng)能清除感染,但是當(dāng)其被過度激活甚至失去控制時,則會反過來傷害機體,細胞因子風(fēng)暴就是這種傷害性表現(xiàn)的一種極端例子。
細胞因子風(fēng)暴發(fā)生時會導(dǎo)致機體免疫細胞及其所產(chǎn)生的細胞因子形成特定的正反饋機制,使包括干擾素(Interferon,IFN)、白介素(Interleukin,IL)、腫瘤壞死因子(Tumor necrosis factor,TNF)、集落刺激因子(Colony Stimulating Factor,CSF)、趨化因子(Chemokine)等在內(nèi)的多種細胞因子在組織、器官中異常升高,進而迅速導(dǎo)致單器官或多器官損傷、功能衰竭,并最終威脅生命1。
細胞因子風(fēng)暴最早于1993年由Ferrara等人在移植物抗宿主病(graft-versus-host disease、GVHD)中提出2,近年由于其在病毒感染中的多發(fā)性,以及CAR-T細胞免疫療法(Chimeric Antigen Receptor T Cell Immunotherapy)在抗腫瘤治療中的應(yīng)用而引起重視,最近則是在2020年初的新冠病毒爆發(fā)中再次成為了眾人關(guān)注的焦點。然而細胞因子風(fēng)暴在這些不同的生物學(xué)過程中所起的作用以及激活的細胞因子是不盡相同的。
首先,多種病原感染會引起細胞因子風(fēng)暴,這些病原不僅包括病毒,例如:巨細胞病毒(CMV)、天花(Variola)病毒、SARS-CoV、SARS-CoV-2、MERS-CoV、埃博拉病毒(Ebola Virus)、登革熱病毒(Dengue Fever Virus)、流感病毒(Influenza Virus)等,也包含細菌,例如土拉弗朗西斯菌、A型鏈球菌等。據(jù)Farrara等人對H5N1病毒和H3N2、H1N1普通流感病毒感染者的對比研究發(fā)現(xiàn)H5N1病毒感染患者具有更高水平的IP-10、MCP-1、MIG、IL8、IL10、IL6、IFN-γ3。Kelvin等對H1N1病毒感染的研究發(fā)現(xiàn)H1N1感染使IP-10、MCP-1、MIP-1β、IL8、IL9、IL17、IL6、TNF-α、IL15、IL12p70顯著升高,其中IL15、IL12p70、IL6是危重癥的標(biāo)志4。SARS冠狀病毒感染相關(guān)研究發(fā)現(xiàn)其主要導(dǎo)致IFN-α、IFN-γ、IL1、IL6、IL12、TGF-β等因子的升高,而MERS病毒感染相關(guān)的細胞因子則為IL1β、IL6、IL8、IL2、IFN-β5,6。Huang等在2020年對SARS-CoV-2的研究發(fā)現(xiàn),重癥監(jiān)護(ICU)患者的血漿中IL2、IL7、IL10、GCSF、IP10、MCP-1、MIP-1α和TNF-α水平高于非重癥患者7。
另外,多種疾病的自然進程也可能會導(dǎo)致細胞因子風(fēng)暴,例如胰腺炎(Pancreatitis)、嗜血細胞性淋巴組織細胞增生癥(Hemophagocytic Lymphohistiocytosis,HLH)、多發(fā)性硬化癥(Multiple Sclerosis,MS)等。Rohit發(fā)現(xiàn)在急性胰腺炎引起的CRS中,TNF-α、IL1、IL10、IL6、IL8、PAF等因子水平顯著提高8;Ellen等報道,IFN-γ、TNF-α、IL6、IL10和IL18等因子可作為HLH治療設(shè)計中的靶點9。
除感染與疾病外,醫(yī)源性治療,例如CAR-T療法、免疫檢查點(Immunocheckpoint )抑制劑治療以及器官移植等,也會引起細胞因子風(fēng)暴。以CAR-T療法為例,Kevin等報道,接受靶向CD19 CAR-T療法的患者中,CRS的發(fā)生率高達70% 10。在完成CAR-T輸注后,T細胞過度激活或源于靶細胞裂解導(dǎo)致IFN-γ、IL6或TNF-α等細胞因子的連續(xù)釋放,這些細胞因子進一步激活免疫細胞(如巨噬細胞、單核細胞)和內(nèi)皮細胞,造成細胞因子的過度級聯(lián)釋放進而導(dǎo)致CRS 。CAR-T治療引發(fā)的CRS所涉及的細胞因子包括IFN-γ、IL2、IL6、IL8、IL1、IL10、IL12、IL15、TNF-α、MCP-1、MIP-1α等11,12。但是與病毒感染導(dǎo)致的細胞因子風(fēng)暴不同的是,因為CAR-T治療產(chǎn)生的CRS與接受治療的患者體內(nèi)CAR-T細胞增殖情況是一致的,所以CRS的發(fā)生又是患者對CAR-T細胞治療反應(yīng)的一個重要的參考指標(biāo)。目前,通過對大量研究數(shù)據(jù)進行分析,TNF-α、IFN-γ、IL6、IL10等細胞因子已用作CAR-T治療期間的常規(guī)監(jiān)測11。
表1:不同原因?qū)е碌募毎蜃语L(fēng)暴涉及的細胞因子比較:
Cause of CRS | CRS Inducers | Cytokines |
Infection | IP-10、MCP-1、MIG、IL8、IL10、IL6、IFN-γ | |
H1N1 Influenza Virus | IP-10、MCP-1、MIP-1β、IL8、IL9、IL17、IL6、TNF-α、IL15、IL12p70 | |
SARS-CoV | IFN-α、IFN-γ、IL1、IL6、IL12、TGF-β | |
MERS-CoV | IL1β、IL6、IL8、IL2、IFN-β | |
SARS-CoV-2 | IL2、IL7、IL10、GCSF、IP10、MCP-1、MIP-1α、TNF-α | |
Bacteria ... | ... | |
Diseases | Acute Pancreatitis | TNF-α、IL1、IL10、IL6、IL8、PAF |
HLH | IFN-γ、TNF-α、IL6、IL10、IL18 | |
Latrogenic Therapy | CAR-T | IFN-γ、IL2、IL6、IL8、IL1、IL10、IL12、IL15、TNF-α、MCP-1、MIP-1α |
... | ... |
因為細胞因子風(fēng)暴所導(dǎo)致的嚴重病理反應(yīng),對其進行檢測和治療對疾病的發(fā)展和治療均具有重要意義。目前對CRS進行治療的主流思路有:1)關(guān)鍵細胞因子的阻斷劑,抗IL6受體的單克隆藥物托珠單抗已廣泛用于CAR-T引起的CRS的治療中,另外TNF-α、IL1等阻滯劑和受體拮抗劑也被證明具有不錯的療效;2)抑制鞘氨醇-1-磷酸鹽( Sphingosine-1-Phosphate,S1P) 受體信號通路,研究表明通過S1P1激動劑調(diào)控內(nèi)皮細胞上的S1P1表達可以抑制細胞因子和先天免疫細胞募集,進而抑制CRS發(fā)生與發(fā)展13。3)免疫抑制劑——糖皮質(zhì)激素。另外,補體抑制劑,PPAR-γ拮抗劑,激活可溶性配體Slit內(nèi)皮特異性的Robo4依賴性信號途徑等多種方式也在持續(xù)研究中。
針對不同疾病和治療導(dǎo)致的CRS的細胞因子的檢測,云克隆可提供全方位的試劑服務(wù)科研工作者:
Cytokines | Catalog of CCC Products | Species |
IP-10 | A371 | Human, Rat, Mouse, Dog, Cattle |
MCP-1 | A087 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Pig, Horse, Simian, Chinese hamster |
MIG | B928 | Human, Rat, Mouse, Cattle |
MIP-1α | A092 | Human, Rat, Mouse, Dog, Cattle |
MIP-1β | A093 | Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Gallus, Simian |
IL1α | A071 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat |
IL1β | A563 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian, Zebrafish |
IL2 | A073 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus, Simian |
IL6 | A079 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian |
IL7 | A662 | Human, Rat, Mouse, Rabbit |
IL8 | A080 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian |
IL9 | A081 | Human, Rat, Mouse, Gallus, Simian |
IL10 | A056 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus, Simian, Zebrafish |
IL12 | A111 | Human, Mouse, Gallus |
IL15 | A061 | Human, Rat, Mouse, Rabbit, Guinea pig, Cattle, Pig, Goat, Gallus, Zebrafish |
IL17 | A063 | Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Horse, Sheep, Gallus |
IL18 | A064 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus |
IFN-α | A033 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian |
IFN-β | A222 | Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Horse, Gallus, Simian |
IFN-γ | A049 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian, Zebrafish |
TNF-α | A133 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian, Zebrafish |
TGF-β1 | A124 | Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian, Zebrafish |
GCSF | A042 | Human, Rat, Mouse, Pig |
PAF | A526 | General |
參考文獻:
1. Tisoncik, J.R., et al., Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews. 2012. 76(1):16-32.
2. Ferrara JL., et al., Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc, 1993, 25: 1216-7.
3. Jong, M.D., et al., Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 2006. 12(10): p. 1203-7.
4. Bermejo-Martin, J.F., et al., Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care, 2009. 13(6): p. R201.
5. Kindler, E., V. Thiel, and F. Weber, Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv Virus Res, 2016. 96: p. 219-243.
6. Channappanavar, R. and S. Perlman, Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol, 2017. 39(5): p. 529-539.
7. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020.
8. Rohit, M., et al., Cytokine storm in acute pancreatitis. Journal of Hepatobiliary Pancreatic Surgery, 2020, 9(4): 401-10.
9. Ellen, B., et al., Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders. Cytokine & Growth Factor, 2015. 26(3): p. 263-280.
10. Hay, K.A.. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br J Haematol, 2018. 183(3): p. 364-374.
11. Shimabukuro-Vornhagen A et al. Cytokine release syndrome. J Immunother Cancer. 2018 Jun 5;6(1):56.
12. Hay, K.A., et al., Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood, 2017. 130(21): p. 2295-2306.
13. Teijaro, J.R., et al., Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell, 2011. 146(6): p. 980-91.