国产网曝门事件在线视频_日韩大片在线蜜柚影院_日韩欧美在线一级一中文字暮_制服丝袜综合国产精品_久久无码专区国产精品_自拍偷拍欧美亚洲_国产成人黄污在线_99热精品免费观看全部_免费看一级一级人妻片_老熟妇仑乱视频一区二区

細(xì)胞因子風(fēng)暴

20203月,我國抗疫幾近結(jié)束,近兩日已無內(nèi)源性新增確診患者,但新冠病毒正肆掠全球其他國家,病毒感染導(dǎo)致的重癥與細(xì)胞因子風(fēng)暴密切相關(guān)?;诖?,我們今天談?wù)勗瓶寺∷鼙M到的綿薄之力。

細(xì)胞因子風(fēng)暴(Cytokine Storm)又稱細(xì)胞因子瀑布級(jí)聯(lián)(Cytokine Cascade、高細(xì)胞因子血癥 (Hypercytokinemia)細(xì)胞因子釋放綜合征(Cytokine Release Syndrome,CRS),機(jī)體對(duì)病毒、細(xì)菌、移植物或其他外界刺激所產(chǎn)生的一種過度免疫應(yīng)答。一般來說,正常的免疫系統(tǒng)能清除感染,但是當(dāng)其被過度激活甚至失去控制時(shí),則會(huì)反過來傷害機(jī)體,細(xì)胞因子風(fēng)暴就是這種傷害性表現(xiàn)的一種極端例子。

細(xì)胞因子風(fēng)暴發(fā)生時(shí)會(huì)導(dǎo)致機(jī)體免疫細(xì)胞及其所產(chǎn)生的細(xì)胞因子形成特定的正反饋機(jī)制,使包括干擾素(Interferon,IFN)、白介素(Interleukin,IL)、腫瘤壞死因子(Tumor necrosis factor,TNF)、集落刺激因子(Colony Stimulating Factor,CSF)、趨化因子(Chemokine)等在內(nèi)的多種細(xì)胞因子在組織、器官中異常升高,進(jìn)而迅速導(dǎo)致單器官或多器官損傷、功能衰竭,并最終威脅生命1。

細(xì)胞因子風(fēng)暴最早于1993Ferrara等人在移植物抗宿主病graft-versus-host disease、GVHD中提出2,近年由于其在病毒感染中的多發(fā)性,以及CAR-T細(xì)胞免疫療法(Chimeric Antigen Receptor T Cell Immunotherapy)在抗腫瘤治療中的應(yīng)用而引起重視,最近則是在2020年初的新冠病毒爆發(fā)中再次成為了眾人關(guān)注的焦點(diǎn)。然而細(xì)胞因子風(fēng)暴在這些不同的生物學(xué)過程中所起的作用以及激活的細(xì)胞因子是不盡相同的。

首先,多種病原感染會(huì)引起細(xì)胞因子風(fēng)暴,這些病原不僅包括病毒,例如:巨細(xì)胞病毒(CMV)、天花(Variola)病毒、SARS-CoV、SARS-CoV-2、MERS-CoV、埃博拉病毒Ebola Virus)、登革熱病毒Dengue Fever Virus、流感病毒Influenza Virus)等,也包含細(xì)菌,例如土拉弗朗西斯菌、A型鏈球菌等。據(jù)Farrara人對(duì)H5N1病毒H3N2H1N1普通流感病毒感染者的對(duì)比研究發(fā)現(xiàn)H5N1病毒感染患者具有更高水平的IP-10、MCP-1MIG、IL8、IL10、IL6、IFN3。Kelvin對(duì)H1N1病毒感染的研究發(fā)現(xiàn)H1N1感染使IP-10MCP-1、MIP-1β、IL8、IL9IL17、IL6、TNF-αIL15、IL12p70顯著升高,其中IL15、IL12p70、IL6是危重癥的標(biāo)志4SARS冠狀病毒感染相關(guān)研究發(fā)現(xiàn)其主要導(dǎo)致IFN-α、IFN、IL1、IL6、IL12、TGF-β等因子的升高,而MERS病毒感染相關(guān)的細(xì)胞因子則ILIL6、IL8、IL2IFN-β5,6。Huang2020對(duì)SARS-CoV-2的研究發(fā)現(xiàn),重癥監(jiān)護(hù)(ICU)患者的血漿中IL2、IL7、IL10GCSF、IP10、MCP-1、MIP-1αTNF-α水平高于非重癥患者7

另外,多種疾病的自然進(jìn)程也可能會(huì)導(dǎo)致細(xì)胞因子風(fēng)暴,例如胰腺炎(Pancreatitis)、嗜血細(xì)胞性淋巴組織細(xì)胞增生癥(Hemophagocytic Lymphohistiocytosis,HLH)、多發(fā)性硬化癥(Multiple Sclerosis,MS)等。Rohit發(fā)現(xiàn)在急性胰腺炎引起的CRS中,TNF-α、IL1、IL10IL6、IL8、PAF等因子水平顯著提高8Ellen等報(bào)道,IFN-γTNF-α、IL6、IL10IL18等因子可作為HLH治療設(shè)計(jì)中的靶點(diǎn)9。

除感染與疾病外,醫(yī)源性治療,例如CAR-T療法、免疫檢查點(diǎn)Immunocheckpoint 抑制劑治療以及器官移植等,也會(huì)引起細(xì)胞因子風(fēng)暴。以CAR-T療法為例Kevin等報(bào)道,接受靶向CD19 CAR-T療法的患者中,CRS的發(fā)生率高達(dá)7010。在完成CAR-T輸注后,T細(xì)胞過度激活源于靶細(xì)胞裂解導(dǎo)致IFNIL6TNF-α等細(xì)胞因子的連續(xù)釋放,這些細(xì)胞因子進(jìn)一步激活免疫細(xì)胞(如巨噬細(xì)胞單核細(xì)胞)和內(nèi)皮細(xì)胞,造成細(xì)胞因子的過度級(jí)聯(lián)釋放進(jìn)而導(dǎo)致CRS CAR-T治療引發(fā)的CRS所涉及的細(xì)胞因子包括IFN、IL2IL6、IL8IL1、IL10、IL12、IL15、TNF-αMCP-1、MIP-1α1112。但是與病毒感染導(dǎo)致的細(xì)胞因子風(fēng)暴不同的是,因?yàn)?/span>CAR-T治療產(chǎn)生的CRS與接受治療的患者體內(nèi)CAR-T細(xì)胞增殖情況是一致的,所以CRS的發(fā)生又是患者對(duì)CAR-T細(xì)胞治療反應(yīng)的一個(gè)重要的參考指標(biāo)。目前,通過對(duì)大量研究數(shù)據(jù)進(jìn)行分析,TNF-α、IFN-γIL6、IL10等細(xì)胞因子已用作CAR-T治療期間的常規(guī)監(jiān)測(cè)11。

 

1:不同原因?qū)е碌募?xì)胞因子風(fēng)暴涉及的細(xì)胞因子比較:

Cause of CRS

CRS Inducers

Cytokines

Infection

H5N1 Influenza Virus

IP-10MCP-1、MIGIL8、IL10、IL6、IFN

H1N1 Influenza Virus

IP-10MCP-1、MIP-1βIL8、IL9IL17、IL6TNF-α、IL15、IL12p70

SARS-CoV

IFN-α、IFN-γ、IL1IL6、IL12TGF-β

MERS-CoV

IL、IL6、IL8IL2、IFN-β

SARS-CoV-2

IL2、IL7IL10、GCSFIP10、MCP-1、MIP-1αTNF-α


Bacteria ...

...

Diseases

Acute Pancreatitis

TNF-α、IL1、IL10、IL6、IL8、PAF

HLH

IFN-γTNF-α、IL6IL10、IL18

Latrogenic Therapy

CAR-T

IFN-γ、IL2、IL6IL8、IL1、IL10、IL12、IL15、TNF-α、MCP-1、MIP-1α

...

...


因?yàn)榧?xì)胞因子風(fēng)暴所導(dǎo)致的嚴(yán)重病理反應(yīng),對(duì)其進(jìn)行檢測(cè)和治療對(duì)疾病的發(fā)展和治療均具有重要意義。目前對(duì)CRS進(jìn)行治療的主流思路有:1)關(guān)鍵細(xì)胞因子的阻斷劑,抗IL6受體的單克隆藥物托珠單抗已廣泛用于CAR-T引起的CRS的治療中,另外TNF-α、IL1等阻滯劑和受體拮抗劑也被證明具有不錯(cuò)的療效;2)抑制鞘氨醇-1-磷酸鹽( Sphingosine-1-PhosphateS1P) 受體信號(hào)通路,研究表明通過S1P1激動(dòng)劑調(diào)控內(nèi)皮細(xì)胞上的S1P1表達(dá)可以抑制細(xì)胞因子和先天免疫細(xì)胞募集,進(jìn)而抑制CRS發(fā)生與發(fā)展13。3)免疫抑制劑——糖皮質(zhì)激素。另外,補(bǔ)體抑制劑,PPAR-γ拮抗劑,激活可溶性配體Slit內(nèi)皮特異性的Robo4依賴性信號(hào)途徑等多種方式也在持續(xù)研究中。


針對(duì)不同疾病和治療導(dǎo)致的CRS的細(xì)胞因子的檢測(cè),云克隆可提供全方位的試劑服務(wù)科研工作者:

Cytokines

Catalog of CCC Products

Species

IP-10

A371

Human, Rat, Mouse, Dog, Cattle

MCP-1

A087

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Pig, Horse, Simian, Chinese hamster

MIG

B928

Human, Rat, Mouse, Cattle

MIP-1α

A092

Human, Rat, Mouse, Dog, Cattle

MIP-1β

A093

Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Gallus, Simian

IL1α

A071

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat

IL1β

A563

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian, Zebrafish

IL2

A073

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus, Simian

IL6

A079

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian

IL7

A662

Human, Rat, Mouse, Rabbit

IL8

A080

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian

IL9

A081

Human, Rat, Mouse, Gallus, Simian

IL10

A056

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus, Simian, Zebrafish

IL12

A111

Human, Mouse, Gallus

IL15

A061

Human, Rat, Mouse, Rabbit, Guinea pig, Cattle, Pig, Goat, Gallus, Zebrafish

IL17

A063

Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Horse, Sheep, Gallus

IL18

A064

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Goat, Gallus

IFN-α

A033

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian

IFN-β

A222

Human, Rat, Mouse, Rabbit, Dog, Cattle, Pig, Horse, Gallus, Simian

IFN-γ

A049

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Gallus, Simian, Zebrafish

TNF-α

A133

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian, Zebrafish

TGF-β1

A124

Human, Rat, Mouse, Rabbit, Guinea pig, Dog, Cattle, Pig, Horse, Sheep, Goat, Gallus, Simian, Zebrafish

GCSF

A042

Human, Rat, Mouse, Pig

PAF

A526

General

 

參考文獻(xiàn)

1. Tisoncik, J.R., et al., Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews. 2012. 76(1):16-32.

2. Ferrara JL., et al., Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc, 1993, 25: 1216-7.

3. Jong, M.D., et al., Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 2006. 12(10): p. 1203-7.

4. Bermejo-Martin, J.F., et al., Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care, 2009. 13(6): p. R201.

5. Kindler, E., V. Thiel, and F. Weber, Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv Virus Res, 2016. 96: p. 219-243.

6. Channappanavar, R. and S. Perlman, Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol, 2017. 39(5): p. 529-539.

7. Huang, C., et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020.

8. Rohit, M., et al., Cytokine storm in acute pancreatitis. Journal of Hepatobiliary Pancreatic Surgery, 2020, 9(4): 401-10.

9. Ellen, B., et al., Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders. Cytokine & Growth Factor, 2015. 26(3): p. 263-280.

10. Hay, K.A.. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br J Haematol, 2018. 183(3): p. 364-374.

11. Shimabukuro-Vornhagen A et al. Cytokine release syndrome. J Immunother Cancer. 2018 Jun 5;6(1):56.

12. Hay, K.A., et al., Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood, 2017. 130(21): p. 2295-2306.

13. Teijaro, J.R., et al., Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell, 2011. 146(6): p. 980-91.